Enhanced absorption of solar radiation by horizontal variability of cloud microphysics

Andreas Macke, Ronald Scheirer, Christine Brandau

Leibniz-Institute for Marine Research, IFM-GEOMAR Kiel, Germany

GESIMA: 3d, non-hydrostatic, bulk cloud physics

cloud water, rain, ice, snow/graupel

Absorption: PPHOM – Full 3D

Absorption: ICA – Full 3D

Absorption: (3D-ext, 1D-scat/abs) – Full 3D

horizontally homogeneous microphysics - full 3D

mean bias:

1.2 Wm⁻² (
$$\theta = 75^{\circ}$$
) - 4.0 Wm⁻² ($\theta = 15^{\circ}$)

cloud microphysics effect on absorption...

- ...increase with decreasing solar zenith angle (deeper penetration of solar photons into the cloud)
- ...decrease with increasing solar zenith angle (less horizontal transport into higher absorbing regions)
- ...depend on horizontal variability of particle size

Variability of water cloud optical properties

Vergleich 1:

Homogen (Fall 1)

$$\tau = 15 \qquad \tau = 5$$

$$\mathbf{r}_{\text{eff}} = \mathbf{10} \, \mu \mathbf{m}$$

$$\mathbf{r}_{\text{eff}} = \mathbf{10} \, \mu \mathbf{m}$$

Inhomogen (Fall 2)

$$\tau = 15$$
 $\tau = 5$ $r_{\text{eff}} = 15 \,\mu\text{m}$ $r_{\text{eff}} = 5 \,\mu\text{m}$

CLABAUTAIR Cloud (Ronald Scheirer)

CLoud liquid wAter content and effective radius retrieval By an AUtomated use of AIRcraft measurements

Solar broadband absorption

Absorption and Horizontal Transport

